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Postsynaptic scaffolds for nicotinic receptors on neurons
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Complex postsynaptic scaffolds determine the structure and signaling capabilities of glutamatergic synapses.  Recent 
studies indicate that some of the same scaffold components contribute to the formation and function of nicotinic synapses 
on neurons.  PDZ-containing proteins comprising the PSD-95 family co-localize with nicotinic acetylcholine receptors 
(nAChRs) and mediate downstream signaling in the neurons.  The PDZ-proteins also promote functional nicotinic innerva-
tion of the neurons, as does the scaffold protein APC and transmembrane proteins such as neuroligin and the EphB2 recep-
tor.  In addition, specific chaperones have been shown to facilitate nAChR assembly and transport to the cell surface.  This 
review summarizes recent results in these areas and raises questions for the future about the mechanism and synaptic role 
of nAChR trafficking.
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Introduction

Nicotinic acetylcholine receptors (nAChRs) are widely 
distributed throughout the central nervous system, and par-
ticipate in numerous higher order functions[1, 2], neurologi-
cal disorders[3, 4] and, of course, addiction[5].  The receptors 
comprise a family of subtypes in vertebrates, all of which are 
cation-selective ligand-gated ion channels[6–8].  At least 12 
neuronal nAChR genes have been identified (α2-10, β2-4) 
which can form hetero- and homopentameric nAChRs[7–10].  
Activation of nAChRs is able to produce diverse effects 
because of receptor location and because of downstream sig-
naling pathways engaged by the receptors in the postsynaptic 
cell.  The signaling pathways often employ calcium because 
nAChR activation depolarizes the cell and can activate 
voltage-gated calcium channels[11].  In the case of homomeric 
α7-containing receptors (α7-nAChRs), significant calcium 
can enter directly through the receptor itself[12–14].  Increasing 
evidence indicates that nAChRs in general, and α7-nAChRs 
in particular, are concentrated both pre- and postsynaptically 
at a variety of glutamatergic and GABAergic synapses[7, 15–18].  
Critical determinants for nicotinic cholinergic transmis-
sion, therefore, are the mechanisms that target and anchor 
nAChRs at synaptic locations and couple the receptors to 

Review

specific signal transduction machinery.  Little is known about 
such mechanisms for neuronal nAChRs.

The best understood mechanisms determining receptor 
localization and function on neurons are those operative 
postsynaptically at glutamate spine synapses.  In this case, 
a vast number of components have been identified, linked 
directly or indirectly to the postsynaptic AMPA and NMDA 
receptors responsible for excitatory neurotransmission 
(Figure 1).  Central are the membrane associated guanylate 
kinases (MAGUKs) comprising the PSD-95 family, which 
contain PDZ domains that bind other proteins[19].  PSD-95 
itself binds directly to the intracellular C-terminal of NMDA 
receptors, and together with other associated PSD-95 mol-
ecules, links numerous components in an elaborate post-
synaptic scaffold.  Included are AMPA receptors, bound via 
a TARP link, as well as components important for signal 
transduction such as calcium/calmodulin-dependent protein 
kinase II (CaMKII).  SAP102 and PSD-93 are related mem-
bers of the PSD-95 family and perform similar functions at 
glutamate synapses depending on the developmental stage 
and location of the synapse[20–22].  The fourth member of 
the family, SAP97, plays a different role, facilitating AMPA 
receptor trafficking to the surface membrane, for example[23].  
Trafficking of AMPA receptors to the surface is a fundamen-
tal feature of synaptic plasticity[24, 25].  Trafficking within the 
surface membrane has also recently emerged as a critical 
determinant of synaptic responses[26–28].  Whether similar 
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mechanisms might control the fate and function nAChRs 
has only recently emerged as a possibility.  

Postsynaptic scaffolds at nicotinic synapses

Because nAChRs do not have intracellular N- or C-ter-
minals, they were thought not likely to interact with PSD-95 
family members.  Surprisingly, the receptors do participate 
in PDZ-scaffolds in a variety of systems[29-31].  It is not clear 
whether the interactions between nAChRs and PSD-95 fam-
ily members are direct or indirect in those cases, but it is clear 
that the scaffold proteins are essential for mediating nAChR 
function.  

Best characterized are the roles of PSD-95 family mem-
bers in regulating nAChR function on autonomic neurons.  
PSD-93 co-localizes with nAChRs in mouse superior cervi-
cal ganglion neurons and submandibular ganglion neurons, 
and apparently tethers guanylate kinase-associated protein 
(GKAP) and Shank at the sites[31] as it does at glutamate syn-
apses.  Moreover, immunoprecipitation of solubilized com-
ponents shows that PSD-93 forms a complex with ganglionic 
nAChRs.  Most importantly, denervation studies demon-
strate that PSD-93 promotes synaptic stability; synaptic clus-
ters of nAChRs disperse much more rapidly in mice lacking 
PSD-93[31].

All four PSD-95 family members are expressed by chick 

Figure 1. Model postsynaptic scaffold at a glutamate spine synapse.  The postsynaptic density is comprised of membrane receptors and ion 
channels, scaffold and adaptor proteins, signaling proteins, cell-adhesion molecules and components of the cytoskeleton.  Glutamate receptors, 
such as NMDARs (N-methyl-D-aspartate receptors) and AMPARs (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors), are located 
in the postsynaptic membrane, with the NMDARs at the center of the synapse and the AMPARs more peripheral.  The PDZ-domain-containing 
scaffold proteins PSD95 (also known as DLG4) and the Src-homology domain 3 (SH3) and multiple ankyrin repeat domains (Shank) family form 
a two-layer protein network below the postsynaptic membrane, which is bridged by guanylate kinase-associated protein (GKAP).  PSD95 forms 
membrane-perpendicular and roughly equally spaced filamentous structures, with its amino terminus attached to the membrane.  Other signaling 
molecules occupy the spaces in the PSD95–GKAP–Shank protein web.  Shank-family scaffolds are further linked to actin filaments.  The domains 
of PSD95 and Shank [PDZ, SH3, guanylate kinase (GK), sterile-alpha motif (SAM) and ankyrin repeats (ANK) (see key)] are shown; other 
proteins are represented by simple shapes and are labeled.  The presynaptic and postsynaptic membranes are connected by cell-adhesion molecules.  
Reprinted by permission from Macmillan Publishers Ltd: Nat Rev Neurosci 10(2), Feng W, Zhang M.  Organization and dynamics of PDZ-
domain-related supramodules in the postsynaptic density, 87-99, copyright 2009.
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ciliary ganglion (CG) neurons[29].  Three of them – PSD-93, 
PSD-95, and SAP102 – co-assemble with heteromeric 
nAChRs, as judged by immunoprecipitation of complexes 
solubilized from heterologous expression systems.  PDZ-
containing puncta co-distribute both with α7-nAChRs 
and α3-containing heteromeric receptors (α3*-nAChRs) 
on CG neurons.  Dispersing the puncta disrupts nicotinic 
downstream signaling pathways in the neurons; this was 
done by transfecting the cells with a construct encoding a 9 
amino acid peptide from cysteine-rich PDZ-binding protein 
(CRIPT), that blocks PDZ-mediated protein-protein inter-
actions.  Receptor activation is no longer able to activate the 

transcription factor CREB and alter gene expression in the 
cells[29].  A more surprising result is that CRIPT dispersal of 
the PDZ-puncta also constrains functional innervation of the 
neurons.  Neurons expressing CRIPT received fewer spon-
taneous excitatory postsynaptic potentials (EPSCs) than 
controls, though the mean EPSC amplitude and nAChR 
immunostaining on the somata did not appear to be substan-
tially reduced (Figure 2).  The results suggested that the post-
synaptic PDZ-scaffold anchors components that exert trans 
synaptic effects, perhaps aligning presynaptic release sites 
over postsynaptic nAChR clusters or boosting presynaptic 
release capabilities.

Figure 2.  PDZ proteins codistribute with CG synaptic nAChRs; disrupting PDZ interactions in postsynaptic cells diminishes synaptic 
transmission.  (A) Freshly dissociated E15 CG neurons were immunostained with a monoclonal antibody (mAb) that recognizes the PSD-95 
family of PDZ proteins and costained with either goat polyclonal antisera for α7-nAChRs (B) or with mAb 35 for α3β4*-nAChRs (E), and the 
paired images merged (C, F).  Both α7-nAChR and α3β4*-nAChR clusters colocalize with PDZ.  Scale bar: 10 μm.  (G) CG neurons in culture for 7 
days develop α3β4*-nAChR clusters that colocalize with PDZ proteins.  CG neurons were transfected on day 1 in culture with GFP-CRIPT, which 
disrupts all PSD-95 family PDZ interactions.  Whole-cell patch-clamp recording revealed many spontaneous EPSCs in control cells transfected with 
GFP (upper trace) but only relatively few EPSCs in cells transfected with GFP-CRIPT (bottom trace).  Reprinted from Neuron, 38(5), Conroy 
WG, Liu Z, Nai Q, Coggan JS, Berg DK, PDZ-containing proteins provide a functional postsynaptic scaffold for nicotinic receptors in neurons, 759-
71, 2003, with permission from Elsevier.     
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Postsnaptic PDZ-scaffolds at nicotinic synapses are not 
likely to be confined to autonomic neurons.  In hippocampal 
neurons, α7-nAChRs appear to co-localize with PSD-95[30].  
What the PDZ-protein is doing there and how it might be 
associated with α7-nAChRs remain interesting questions.  
The same report showed that a Wnt-7a signaling pathway 
promoted accumulation of presynaptic α7-nAChRs co-lo-
calized with the scaffold protein adenomatous polyposis coli 
(APC).  Jacob and co-workers demonstrated that postsynap-
tically APC is localized with α3*-nAChRs on chick CG neu-
rons, rather than with α7-nAChRs[32].  PSD-93 forms part 
of the APC complex with α3*-nAChRs on CG neurons.  In 
addition, the complex contains End binding protein 1 (EB1), 

macrophin, IQ motif containing GTPase activating protein 1 
(IQGAP1), and 14-3-3 which together link α3*-nAChRs to 
the cytoskeleton and stabilize the postsynaptic complex[33].

Trans synaptic regulation 

The ability of CRIPT to reduce nicotinic innervation of 
CG neurons suggested that the postsynaptic PDZ-scaffold 
organized components required for trans synaptic control 
of synapse formation.  Neuroligin (NL) fulfills some of 
the criteria for such a component.  CG neurons express 
several forms of NL and their binding partners α- and 
β-neurexins[34, 35].  Overexpression of tagged NL demon-

Figure 3.  Required NL domains for induction of nicotinic synapses.  (A) NL constructs were prepared for transfection of E8 CG neurons in cul-
ture.  NL, rat NL-1 full length with an 8-amino acid FLAG epitope fused on the N-terminus; ExFmsCyNL, NL-1 construct in which the extracel-
lular domain was replaced by the extracellular domain of Fms; ExFmsCyNL-pdz, ExFmsCyNL lacking the C-terminus PDZ-binding domain of 
NL-1; NL-pdz, NL-1 lacking the 5-amino acid C-terminus representing a PDZ-binding motif; NLc54 and NLc14, NL-1 truncated after the first 
54 and 14 amino acids, respectively, of the cytoplasmic domain; ExNLgpi, extracellular AChE-like domain of NL-1 with a gpi linkage site at the C-
terminus; GFPCyNLc54, GFP fused to the first 54 amino acids of the cytoplasmic domain of NL-1.  Flag tag, 8 amino acids attached at the N-ter-
minus; AChE homology domain, extracellular domain of NL-1 homologous to the equivalent region of AChE; TM, transmembrane domain; Cyto-
plasmic domain, cytoplasmic portion of NL-1; PDZ motif, PDZ-binding motif; GFP, green fluorescent protein sequence.  (B) Changes in mEPSC 
frequency caused by individual NL-1 constructs.  The frequency and amplitude of mEPSCs recorded (in TTX) from neurons 5−8 days after trans-
fection with the indicated NL-1 constructs were expressed as a percent of the values obtained from control neurons in the same cultures and then 
averaged across experiments to obtain mean±SEM for the normalized values (n=# of neurons).  CRIPT refers to a GFP-CRIPT construct that dis-
perses PDZ-scaffold proteins.  Chick NL, chick full-length NL-1.  All of the normalized values for frequency, except for ExNLgpi, were significantly 
different (P<0.05) from control (100%) where control represents cells transfected with GFP and untransfected cells; none of the normalized values 
for amplitude were significantly different from control (100%).  The results indicate that extracellular and proximal cytoplasmic sequences of NL 
are necessary to enhance mEPSC frequency, while dominant-negative effects are observed for constructs having only the NL cytoplasmic sequence 
or the cytoplasmic sequence attached to an inappropriate extracellular sequence.  PDZ interactions are not required for the effects.  Reprinted from 
Dev Biol 307 (1), Conroy WG, Nai Q, Ross B, Naughton G, Berg DK, Postsynaptic neuroligin enhances presynaptic inputs at neuronal nicotinic 
synapses, 79−91, 2007, with permission from Elsevier.
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strates that it co-localizes with nAChRs and can transcel-
lularly induce accumulation of presynaptic components in 
adjacent neurites overlying the nAChR clusters[34].  Electro-
physiological analysis of synaptic events indicates that NL 
increases the frequency of spontaneous miniature EPSCs 
(mEPSCs) recorded in the neurons without increasing 
mEPSC amplitude.  This is most readily consistent with a 
presynaptic effect, though other possibilities remain.  A dis-
section of the NL subdomains revealed that both the extra-
cellular and intracellular domains were required for maximal 
mEPSC frequency, and further that the intracellular domain 
by itself functioned as a dominant negative (Figure 3).  Unex-
pectedly, overexpression of NL boosted mEPSC frequency 
even if the construct lacked the PDZ-binding domain.  The 
results suggested that high levels of NL can function as their 
own synapse-nucleating event and need not tether directly to 
a PDZ-scaffold.

Other transmembrane “synaptogenic” molecules are also 
expressed by CG neurons and can augment nicotinic inner-
vation.  These include the cell adhesion molecules L1 and 
SynCAM, both of which can act in CG neurons in culture to 
increase the number of synaptic contacts the cells receive[36].  

This implies a trans synaptic effect.  Electroporation studies 
confirmed that both endogenous NL and L1 act to provide 
this function in vivo.  They are required for CG neurons to 
receive the expected number of presynaptic boutons overly-
ing postsynaptic nAChR complexes (Figure 4).  SynCAM, in 
contrast, is not critical for synapse formation in vivo but may 
nonetheless contribute to synaptic maturation[36].

Yet another transmembrane component interacting with 
nAChRs on CG neurons is the EphB2 receptor (EphB2R).  
Transsynaptic interactions between EphB2Rs on postsyn-
aptic cells and the transmembrane protein ephrinB-1 on 
presynaptic neurons can influence the clustering and func-
tion of NMDA receptors[37–39].  On CG neurons, EphB2Rs 
co-localize with α7-nAChRs on somatic spines embedded 
within lipid rafts[40].  Activation of the EphB2Rs with an 
ephrinB-1 fragment had two effects: it physically constrained 
α7-nAChRs from dispersal following spine collapse or lipid 
raft dispersal, and it augmented nicotinic activation of the 
transcription factor CREB[40].  How it does this and what the 
physical basis is for EphB2R/α7-nAChR interactions remain 
open questions.

Figure 4.  L1 RNAi show reduces innervation of α3*-nAChR 
clusters in ovo.  (A) CG neurons transfected in culture with a 
construct encoding an RNAi against chicken L1 and RFP as 
a marker (red) showed lower levels of endogenous L1 as seen 
by immunostaining (green) than did nearby untransfected 
cells.  This is most evident when viewing the images with the 
RFP fluorescence deleted to reveal the L1 stain (bottom).  
(B) An RNAi with a scrambled sequence (RNAi-control) 
had no effect on L1 levels.  (C) Electroporation of CG 
neurons in ovo revealed significant reductions in SV2 levels 
abutting RNAi-L1 transfected cells compared to RNAi-
control transfected cells, similar to the pattern seen with 
the L1Cyt-GFP construct.  In contrast transfection with an 
RNAi construct that targets NL (RNAi-NL) had no affect on 
SV2 levels.  (D) Quantifying the proportion of α3*-nAChR 
clusters with SV2 clusters apposed, to assay for potential 
synapses, revealed a similar pattern.  Cells transfected with 
RNAi-L1, but not with RNAi-NL, had a significantly reduced 
fraction of α3*-nAChR clusters receiving SV2 puncta.  
*P<0.05 compared to RNAi-control by ANOVA with 
Bonferroni post-tests.  Scale bars: 10 µm.  Reprinted from 
Mol Cell Neurosci 39 (1), Triana-Baltzer GB, Liu Z, Gounko 
NV, Berg DK, Multiple cell adhesion molecules shaping a 
complex nicotinic synapse on neurons, 74-82, 2008, with 
permission from Elsevier.
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Trafficking and chaperones 

Current expectations about nAChR trafficking have 
been shaped in part by recent results showing that glutamate 
receptor trafficking both to and within the plasma membrane 
determines synaptic function and plasticity[41–43].  Early stud-
ies identified an “up-regulation” of functional nAChRs on the 
cell surface in response to chronic nicotine exposure[44–46].  It 
has now become clear that the up-regulation results from a 
variety of post-translational mechanisms including protein 
assembly and both trafficking to and stabilization within the 
surface membrane[47–51].  Moreover, both the mechanism and 
the extent of up-regulation appear to be cell-type specific[52].

Trafficking of nAChRs to the cell surface depends on 
chaperones.  This may be most pronounced for α7-nAChRs 
which cannot be expressed by many cell types [53].  Ric-3 
has been identified as a chaperone that helps assemble and 
traffic α7-nAChRs to the cell surface[54–56].  Yeast-2-hybrid 
analysis has identified other chaperones mediating assembly 
and transport of neuronal nAChRs.  One is 14-3-3η which 
interacts with α4 nAChR subunits and increases the steady-
state levels of α4β2-nAChRs on the cell surface[57].  A sec-
ond is VILIP-1 which also regulates α4β2-nAChR surface 
expression[58].

Receptor internalization is also likely to depend on spe-
cific scaffold components and contribute importantly to the 
regulation of nicotinic signaling.  An interesting example is 
provided by the SNARE-dependent activity-induced inter-
nalization of α7-nAChRs; replacement from an internal pool 
is required to maintain downstream signaling[59].  Yet other 
scaffold proteins control α7-nAChR clustering as demon-
strated by the report on PICK1[60].  The use of proteomics 
to identify proteins that interact specifically with individual 
nAChR subtypes will almost certainly divulge new and inter-
esting players controlling nAChR trafficking and stabilization 
at synaptic sites[61].

Rapid trafficking of nAChRs in the surface membrane 
is only beginning to be examined.  Early studies on muscle 
nAChRs demonstrated that receptors can be mobile in 
the plasma membrane and traffic to sites of nerve-muscle 
contact[62–64].  Relatively rapid and reversible diffusion of the 
receptors can also occur in muscle membrane[65].  Recently 
it has been shown that nAChRs on autonomic neurons are 
capable of rapid lateral diffusion into and out of synapses 
depending on innervation and cellular conditions[66].  How 
this trafficking is regulated and what role it might play in 
nicotinic signaling in the CNS will be interesting issues to 
resolve.

Future directions 

Although it is clear that the PSD-95 family of MAGUKs 
is critical for the maintenance of normal nicotinic synapse 
function, the roles of individual members have not yet been 
defined.  Studies in glutamatergic systems have shown that 
PSD-95 family members exert both common and unique 
effects on synaptic function[42].  A similar level of complexity 
may exist at nicotinic synapses.  Determining how and which 
PSD-95 family members specify nAChR expression, localiza-
tion, and activity will be an important part of understanding 
the nature of nicotinic synapses.  

The synaptic capabilities of nAChRs are likely to be 
determined in part by their precise spatio-temporal regula-
tion on neurons.  New technologies have recently been devel-
oped to characterize the dynamics of endogenous synaptic 
receptors with high temporal and spatial resolution.  Promi-
nent among these is single-particle-tracking studies using 
semiconductor quantum dots (QDs).  Recently QD analysis 
has demonstrated that lateral diffusion of glutamate receptors 
is a critical mechanism shaping synaptic responses at gluta-
mate synapses[26].  These new tools will be useful to resolve 
unanswered questions about the dynamics of nAChRs in 
central excitatory synapses.  It will be exciting to apply these 
tools for the first time to the analysis of nAChRs on neurons.
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